生物脫氮除磷(Biological Nutrient Removal,簡稱BNR)是指用生物處理法去除污水中營養(yǎng)物質(zhì)氮和磷的工藝。經(jīng)過幾十年的發(fā)展,脫氮除磷工藝演變出了多種工藝和工藝變種,下面,江蘇銘盛環(huán)境對污水處理中常用的生物脫氮除磷工藝進(jìn)行匯總和介紹,以期為我們選擇污水處理技術(shù)路線,提供多種選項。
一、A2/O工藝
1、厭氧池
圖1為傳統(tǒng)的A2/O工藝流程,首段為厭氧池,本池的主要作用為釋放磷(具體反映機理看前面),其次在本池中也可發(fā)生水解酸化反應(yīng)。原水與同步進(jìn)入的二沉池回流的含磷污泥二者混合后再兼性厭氧發(fā)酵菌的作用下部分易生物降解的大分子有機物被轉(zhuǎn)化為小分子的揮發(fā)性脂肪酸(VFA),聚磷菌將細(xì)胞內(nèi)的聚磷水解成正磷酸鹽,釋放到水中,釋放的能量可供轉(zhuǎn)型好氧的聚磷菌在厭氧的壓抑環(huán)境下維持生存,同時吸收水解后的小分子有機物合成PHB并儲存在體內(nèi)。另外,NH4+-N因細(xì)胞的合成而被去除一部分,同時回流污泥的稀釋作用使污水中的NH4+-N濃度下降;另外回流污泥中的NO3—-N進(jìn)入?yún)捬醭睾笱杆倮迷械目焖俳到庥袡C物而被還原為氮氣釋放,會部分去除進(jìn)水中的有機物,該池出水幾乎不含NO3—-N。
影響因素:對于高氨氮廢水,污泥回流中攜帶有大量的NO3—-N,當(dāng)硝氮濃度≥4mg/L時,將減少了據(jù)鄰居釋放所獲得的溶解性有機物的量,不能是該池形成較好的兼性厭氧環(huán)境,不僅不利于據(jù)鄰居的釋磷反應(yīng),而且也不利于大分子的厭氧發(fā)酵為小分子有機物,對釋磷反應(yīng)不利。
2、缺氧池
廢水經(jīng)過厭氧池進(jìn)入缺氧池,該池首要功能為反硝化脫氮,硝氮通過內(nèi)循環(huán)由好氧池進(jìn)入缺氧池,回流比通過總氮去除率進(jìn)行計算(見公式1)?;旌弦哼M(jìn)入缺氧段后,反硝化菌利用污水中的有機物將回流液中的硝態(tài)氮還原為氮氣釋放到空氣中,因此有機物濃度和硝態(tài)氮濃度都會大幅度降低。其次,該段可能發(fā)生磷的釋放和吸收(反硝化除磷)反應(yīng),或者兩者同時存在。另外,生活污水處理過程中,缺氧池末端的COD基本在50以下甚至更低,在不考慮好氧池同步硝化反硝化的情況下TN濃度和出水基本相同。
η=r/(1+r)——1
其中:η:總氮去除率;r:回流比
3、好氧池
混合液從缺氧池進(jìn)入好氧池,曝氣池的這一反應(yīng)單元室多功能的,去除BOD、硝化、吸收磷等反應(yīng)都在本反應(yīng)器內(nèi)進(jìn)行?;旌弦河袡C物濃度已經(jīng)很低,聚磷菌主要是靠分解體內(nèi)儲存的PHB來獲取能量供自身生長繁殖,同時超量吸收水中的溶解性正磷酸鹽以聚磷(Poly-P)的形式儲存在細(xì)胞內(nèi),經(jīng)過沉淀排出剩余污泥,達(dá)到除磷的效果。有機氨被氨化繼而被硝化,氨氮濃度顯著下降。隨著硝化過程的進(jìn)行,硝氮濃度增加,堿度降低(對于高氨氮廢水,需在好氧池中大量投加堿才能維持硝化反應(yīng)的進(jìn)行)。
4、A2/O工藝的優(yōu)缺點
優(yōu)點:同時脫氮除磷;反硝化過程為硝化提供堿度;釋磷及反硝化過程同時除去有機物;污泥沉降性能好,SVI值一般均小于100。
缺點:①回流污泥含有硝酸鹽進(jìn)入?yún)捬鯀^(qū),對除磷效果有影響;②脫氮受內(nèi)回流比影響;③聚磷菌和反硝化菌都需要易降解有機物。
A2/O這是一個很成熟的脫氮除磷工藝,后續(xù)介紹的其他脫氮處理工藝基本上是為克服A2/O工藝的缺點而進(jìn)行改動的,從而在節(jié)能的基礎(chǔ)之上滿足出水要求。
在A2/O工藝運行中經(jīng)常一些問題,如:絲狀菌膨脹、污泥老化、SVI值過高、厭缺氧池表面出現(xiàn)黑色或者黃色浮泥、曝氣池表面出現(xiàn)白色泡沫或者粘稠的黃色泡沫、二沉池跑泥等等。出現(xiàn)這些問題,除進(jìn)水指標(biāo)的波動、設(shè)計缺陷外,其他均為工藝參數(shù)沒有控制好所導(dǎo)致的。
二、倒置A2/O工藝
與常規(guī)的A2/O工藝相比,倒置A2/O工藝(見圖2)從前往后以此為缺氧-厭氧-好氧,該工藝的設(shè)計初衷是為了降低污泥回流中硝態(tài)氮對厭氧釋磷的影響,特別是對于高氨氮廢水污泥回流中攜帶有大量的硝氮,抑制厭氧釋磷反應(yīng)。同時,為了解決碳源分配的問題,采用兩點進(jìn)水的方式來提供厭氧釋磷中有機物的消耗。
該工藝由于硝態(tài)氮在前端的缺氧池中完全反硝化,消除了硝氮對厭氧釋磷的不利影響,從而保證厭氧釋磷的穩(wěn)定進(jìn)行,并且聚磷菌釋磷后直接進(jìn)入生化效率比較高的好氧環(huán)境,使其在厭氧條件下形成的吸磷動力得到了更有效的利用。
有些設(shè)計人員在設(shè)計倒置A2/O工藝時省去了混合液回流,通過增大二沉池的污泥回流來滿足反硝化需求。增大污泥回流雖然不改變二沉池的比表面積負(fù)荷率,但是在一定程度上降低了二沉池的沉淀時間,不建議采用。
厭氧釋磷的實際停留時間(含回流量)一般要求在0.5-2h,倒置A2/O雖然滿足了硝氮對厭氧釋磷的影響,但是需要增加厭氧池的池容,從而滿足厭氧釋磷實際停留時間的要求,增加了土建成本。同時多點進(jìn)水需要很好的進(jìn)行控制,以此來調(diào)整厭、缺氧池的碳源配比達(dá)到良好的脫氮除磷效果。
該工藝適合原水中TN含量比較高的廢水,只要缺氧池的容積設(shè)計的合理可以完全反硝化,從而為厭氧釋磷提供良好的厭氧環(huán)境。
三、A+A2/O工藝與JHB工藝
A+A2/O工藝(見圖3)與A2/O工藝相比,在厭氧池的前段增加了一個預(yù)脫硝池,主要是為了解決污泥回流中攜帶的硝酸鹽對厭氧釋磷的影響。該工藝與UCT工藝的目的是相同的。
在進(jìn)水TN含量較高的情況下,該工藝不太適用,因為污泥回流中攜帶有大量的硝氮,預(yù)脫硝池因設(shè)計停留時間過短(一般在0.5-0.8h)無法進(jìn)行完全的反硝化反應(yīng),從而影響厭氧釋磷。
1991年,Pitman等人提出Johannesburg(JHB)工藝,該工藝是在A2/O工藝到厭氧區(qū)污泥回流路線中增加了一個缺氧池(見圖4),來自二沉池的污泥可利用33%左右(進(jìn)水分配可調(diào))進(jìn)水中的有機物作為反硝化碳源去除硝態(tài)氮,以消除硝酸鹽對厭氧池厭氧釋磷的不利影響。
其實這兩個工藝是一樣的,只是叫法不同。在設(shè)計中A+A2/O工藝也會設(shè)計多點進(jìn)水,畢竟碳源的有效分配是關(guān)鍵。
四、UCT工藝
A2/O工藝的回流污泥中很難保證不含有硝氮,為了徹底排除在厭氧池中硝氮的干擾,南非開普敦大學(xué)于1983年開發(fā)了UCT工藝(見圖5),將污泥回流至缺氧區(qū),并增加了從缺氧段至厭氧段的缺氧混合液回流,使污泥經(jīng)缺氧反硝化后再回流至厭氧區(qū),減少了回流污泥中的硝酸鹽含量,盡量的避免了硝態(tài)氮對厭氧釋磷的影響,同時在該工藝總存在反硝化除磷現(xiàn)象。但當(dāng)進(jìn)水碳氮比較低時缺氧池不能實現(xiàn)完全反硝化,仍有一部分硝氮回流到厭氧區(qū)對厭氧釋磷產(chǎn)生不利影響。
書本上給出的設(shè)計參數(shù):厭氧區(qū)HRT 1-2h;缺氧區(qū)HRT 2-4h;好氧區(qū)HRT 4-12h;污泥回流比80%-100%;缺氧回流比200%-400%;硝化液回流比100%-300%。(以上數(shù)據(jù)僅為參考,在設(shè)計時需要根據(jù)實際水質(zhì)進(jìn)行設(shè)計。)